Active Dual Collaborative Filtering with Both Item and Attribute Feedback

نویسندگان

  • Luheng He
  • Nathan Nan Liu
  • Qiang Yang
چکیده

The new user problem (aka user cold start) is very common in online recommender systems. Active collaborative filtering (active CF) tries to solve this problem by intelligently soliciting user feedback in order to build an initial user profile with minimal costs. Existing methods only query the user for feedback on items, while users can have preferences over items as well as certain item attributes. In this paper, we extend active CF via user feedback on both items and attributes. For example, when making movie recommendations, the system can ask users for not only their favorite movies, but also attributes such as genres, actors, etc. We design a unified active CF framework for incorporating both item and attribute feedback based on the random walk model. We test the active CF algorithm on realworld movie recommendation data sets to demonstrate that appropriately querying for both item and feature feedback can significantly reduce the overall user effort measured in terms of number of queries. We show that we can achieve much better recommendation quality as compared to traditional active CF methods that support

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

  One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...

متن کامل

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

A Collaborative Recommender Based on User Information and Item Information

Collaborative recommender is the most popular recommendation technique nowadays and it mainly employs the user item rating data set. Traditional collaborative filtering approaches compute a similarity value between the target user and each other user by computing the relativity of their ratings, and they only consider the ratings information. User attribute information associated with a user's ...

متن کامل

The 2009 International Symposium on Information Processing ( ISIP 2009 ) 21 – 23 , August 2009

Collaborative recommender is the most popular recommendation technique nowadays and it mainly employs the user item rating data set. Traditional collaborative filtering approaches compute a similarity value between the target user and each other user by computing the relativity of their ratings, and they only consider the ratings information. User attribute information associated with a user's ...

متن کامل

Employing User Attribute and Item Attribute to Enhance the Collaborative Filtering Recommendation

Recommender systems are web based systems that aim at predicting a customer's interest on available products and services by relying on previously rated products and dealing with the problem of information and product overload. Collaborative filtering is the most popular recommendation technique nowadays and it mainly employs the user item rating data set. Traditional collaborative filtering ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011